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Agenda 
•   Weak gravitational lensing –  

what, how, and why 

•   The “parameterized post-Friedmannian” 
framework –  
model-independent constraints on modified 

gravity from weak lensing 

•   The High Altitude Lensing Observatory –  
a new concept for a balloon-borne weak 

lensing survey 



Weak lensing 



Matter acts like a lens 

Images get distorted: 

* In GR, to linear order 
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Why should 
we care? 
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Total matter 
distribution 

From matter distribution to 
galaxy distortions 
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Total matter 
distribution 

From matter distribution to 
galaxy distortions 

Distortion field 
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Total matter 
distribution 

From matter distribution to 
galaxy distortions 

Distortion field Measurable changes 
to galaxy shapes 

Goal –  
to unravel this process to get from 3 back to 1 
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From galaxy shapes to matter 
distribution 
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ei ≈ 2γ i

Galaxy ellipticity is an 
estimator of the shear: 

The shear is a component 
of the distortion tensor: 
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Ψ =
lens potential 
projected along the 
line of sight 
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Why this is hard 

Many other effects distort galaxy shapes and 
mimic the lensing signal we are trying to extract: 

•  Atmospheric seeing 

•  Intrinsic alignments 
(Hirata & Seljak 2004) 

•  Instrumental point 
spread function 

•  Detector effects, e.g. 
pixelization and charge 
transfer inefficiency 
(Massey et al. 2009) 

•  Lossy data compression* 

From  space 

From the ground 



Survey simulations 
Weak lensing image simulation 
housed @ Caltech (Dobke et al. in 
prep) 

•  Galaxies based on Hubble UDF 

•  Realistic shapes modeled with 
shapelets 

tines are bundled in the simage download, but up-

dated versions may be periodically available from

http://idlastro.gsfc.nasa.gov/. In addition, exploiting

the full potential of some sections of simage require

SExtractor, available from http://astromatic.iap.fr/

software/sextractor/.

This paper introduces the theory behind the code,

its structure, and its operation. In section 2, we briefly

describe shapelets, the mathematical formalism em-

ployed to generate realistic galaxy morphologies. In

section 3, we describe the structure of the software

package, and discuss some of its main modules in

some detail. We describe parameters that can be used

to specify the desired telescope size and throughput,

survey exposure time, instrumental resolution, detec-

tor noise, etc. In section 4, we provide step-by-step

examples of its use. We conclude in section 5.

2. Introduction to shapelets

At the heart of simage is the ability of the shapelets

method to efficiently and flexibly reconstruct complex

galaxy morphologies. Shapelets are a complete, or-

thogonal set of basis functions, and a weighted linear

combination of these can represent any localised im-

age (Refregier et al. 2003; Bernstein & Jarvis 2002

(BJ02); Massey & Refregier 2005). This is analagous

to a Fourier transform, where weighted combinations

of sines and cosines can be used to reconstruct non-

localised images. The mathematical properties of the

shapelet basis set make it particularly convenient for

image processing, including convolution with a Point

Spread Function (PSF), pixellisation, and operations

such as translations, rotations, magnifications and

shears, that can be used to add a known signal into

a simulated image (Refregier & Bacon 2003; Massey

et al. 2007a). In this section, we shall summarize the

shapelet formalism, highlighting the subroutines in the

shapelets software package that enable each step. For

a more in depth description of the method, the reader

is directed to the aforementioned references.

Shapelets come in two flavors: Cartesian shapelets

are separable in x and y, and polar shapelets in r and

θ. There is a one-to-one mapping between the two, so
without loss of generality, we shall adopt whichever

has the more convenient symmetries for the task at

hand. The polar shapelet basis functions
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where Lq
p(x) are the Laguerre polynomials, have

an overall scale size β and are parameterized by two
integers, n and m, which are the number of oscilla-
tions in the radial and tangential directions. The ba-

sis functions are calculated using shapelets chi.pro.

Using shapelets decomp.pro, a galaxy (or star) im-

age I(r, θ) can then be decomposed into (complex)
“shapelet coefficients” fn,m

fn,m =

∫∫

R

f(r, θ) χn,m(r, θ; β) r drdθ , (2)

so that the (wholly real) image can be reconstructed,

using shapelets recomp.pro as

I(r, θ) =
∞∑

n=0

n∑

m=−n

fn,mχn,m(r, θ; β) . (3)

In practice, it is necessary to truncate the expansion

at some maximum value of n. Figure 1 shows an ex-
ample galaxy image and its reconstructed counterpart

using shapelets up to order nmax = 20. It can be seen
that the model easily captures the major features of the

original galaxy.

In shapelet representation, convolution between

two images (such as a galaxy and a telescope’s

Point Spread Function) is simply a matrix multi-

plication of their fn,m coefficient arays (Refregier

Fig. 1.—An example of a spiral galaxy (from the Hub-

ble Deep Field) modelled using shapelets (Massey &

Refregier 2005).
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The routine shapelets paths.pro stores the loca-

tions of all necessary input files and output directo-

ries. This should be updated by the user so that all

the strings point to the correct places (or the locations

of files moved and directories created to reflect those

in the routine). Important items include the directory

path containing the unpacked shapelets code, and the

location of the data directory. This data directory is the

depository for the output image data and catalogs, the

input PSF fits file, and the shapelet catalog of source

images, which will be described in §3.2.1.

3.2. Module overview

The routine simage.pro is the primary program,

which utilizes various routines within the pipeline to

manufacture a simulated image. Keywords listed in

Table 1 can be used to specify the desired telescope

and survey characteristics. By default, the image will

be produced in the B, V, i, z, J, and H bands, based

on a galaxy morphology catalog pre-constructed from

the Hubble UDF. More permanent changes to the tele-

scope and survey characteristics can be fixed in the

telescope.param file.

Figure 2 details the pipeline’s main processes in the

form of a flow chart. We note from the chart that

there are three main stages to the pipeline; the multi-

wavelength catalog generation, the repopulation of the

catalog images into a field/resolution governed by the

desired telescope parameters, and finally the addition

of the various noise components. Other important rou-

tines in the pipeline are,

• simage make shapelet object.pro: Generates
a pixellated image of one simulated galaxy from

a given a set of shapelet coefficients.

• simage make analytic object.pro: Generates
a object for the image simulations, using an ana-

lytic profile. The size, magnitude and ellipticity

are drawn from a real UDF galaxy template.

• num counts frac.pro Calculates the galaxy

magnitude distributions normalized to the COS-

MOS survey data at low, mid, and high magni-

tudes.

• get telescope psf*: Reads in the desired PSF
file before converting it into shapelet space (*

‘telescope’ can represent a variety of telescope

or survey names e.g. get udf psf, etc.).

Table 1: Descriptions of the user inputs for tele-

scope.param. These parameter inputs govern tele-

scope design and in turn the resultant output images.

Parameter file input: Description:

throughput ratio Total system throughputs relative to UDF

pixel scale The instrument pixel scale in arcsecond/pixel

read noise CCD read noise in number of electrons

psf type Selects which PSF (UDF etc.) to use

collecting area The mirror collecting area in m2

band begin The band on which to start the simulations

band end The band on which to end the simulations

exposure time Exposure time in seconds

area The area on the sky to simulate in sq. arcmins

random seed A random seed for all random selections

gamma The user specified weak lensing shear

output file pref Selection of output image file names

n star Number of field stars to be added

n gal Number of field galaxies

filter files Path to user’s transition filter files

ee50 The half light radius of the PSF

Table 2: Meaning of flags output from shex.pro detail-

ing to the user how well a given object was modeled

with shapelets. A 0 value implies a successful decom-

position, while a 10 signals failure.

.

4



Example: Lossy data 
compression 

Next-generation space missions may produce 
data faster than our networks can handle 

                 lossy data compression? 

! !
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Systematic bias?  Extra noise? 



bias 

How large is the effect? 

Simulated images of 
galaxies with 
exponential profiles: 

      Bias ≤ 10-4 

      Noise ≤ 1% 

(Bernstein et al. in 
prep) 

Results from 
shapelets simulation 
on JPL supercomputer 
soon  

(AV et al. in prep) 
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F ig. 2.— T he biases (left ) and rela t ive noise level (right ) of measurements on codec images, rela t ive
to raw images, are plot ted for several quant it ies measured on simula ted galaxies. T he det ails of t he
simula t ion and t he measurement process are in t he tex t . From top to bot tom, we plot the bias in
t he (log of ) galax y flux , (log of ) galax y size, and t hen t he two components of galax y ellipt ici ty. R ed
points are for galaxies wi t h S / N = 15, green have S / N = 50, and blue have S / N = 300, wi t h each
point plot ted a t i ts input ellip t ici ty. A ll da t a are fully consistent wi t h t he codec images yielding no
bias or change in noise level from the raw images—a t accuracies of ± 10 − 4 for biases and < 1% in
noise levels. [Noise levels for S / N = 300 cases are not plot ted because t here are too few t rials for
an accura te measure of R MS noise.]

Bias Relative noise 



Weak lensing science 

Numerical simulation (Jain, Seljak & White 2000) 

The shear map (with 
redshifts) and its 
statistics tell us about: 

•  the large scale matter 
distribution 

•  the evolution of large 
scale structure 

•  other cosmological 
parameters 

•  non-Gaussianity 

•  etc… 



Dark matter maps 

COSMOS –  
2° square survey 

•  Imaging with ACS I 
band 

•  Redshifts from the 
ground 

Massey et al. 2007 



Dark matter maps 

COSMOS –  
2° square survey 

•  Imaging with ACS I 
band 

•  Redshifts from the 
ground 

Massey et al. 2007 
F ig. 15.— C onst raints on cosmological parame-
ters Ωm and σ8 , from a full 3D cosmic shear anal-
ysis. Solid contours indica te 68.3%, 95.4% and
99.7% confidence limi ts due to sta t ist ical errors
and marginaliza tion over other parameters; po-
tential sources of addi t ional, systema tic error are
discussed in the tex t . T hese const raints are far
tighter than the equivalent resul ts from our simple
2D analysis, which are reproduced from figure 12
as dot ted lines for ease of comparison. T he whi te
area a t the bot tom-right was excluded because the
Smi th et al. (2003) fi t t ing funct ions could not be
evalua ted wi thou t unreasonable ex t rapola tion of
the non-linear ma t ter power spect rum to physical
scales smaller than 0.1h−1 kpc.

included. A s described below, the error budget is
increased by a factor of  1.5, and the minimum
χ2

r e d u ce d to 1.04, when considering systema tic er-
rors in the rela t ive shear calibra tion and mixing
of galaxies between bins. A gain we find the usual
degeneracy, the best-fi t posi t ion along which is de-
termined by the parameter  . However, wi th the
full 3D informa tion, parameter const raints in the
direct ion or thogonal to this are much tighter. O ur
68% confidence limi ts are well-fi t by

σ8

 
Ωm

0.3

 0.44

= 0.866 ± 0.033 , (31)

for 0.3 ! Ωm ! 0.6.
We now incorpora te a systema tic error bud-

get into our 3D parameter const raints. We al-

low a 6% absolu te shear calibra tion uncer tainty
( L eau thaud et al. 2007), a 5% rela t ive shear cal-
ibra tion uncer tainty between low and high red-
shift bins, and a potential 10% contamina tion (e.g.
M assey et al. 2004) of the high redshift bin by
galaxies really a t low redshift (and vice versa) due
to the possibili ty of ca tast rophic redshift errors
discussed in §2.4. T his leaves a final 68.3% confi-
dence limi t of

σ8

 
Ωm

0.3

 0.44

= 0.866 ± 0.033 ± 0.026 ± 0.009 + 0.017
−0.000

= 0.866 + 0.085
−0.068 , (32)

where the various systema tic errors have been
combined linearly on the second line. Note tha t ,
when considering the rela t ive improvement in the
parameter const raints from a 2D analysis (29) to
a 3D analysis (32), i t is not appropria te to in-
clude errors from uncer tainty in the absolu te cal-
ibra tion of a shear measurement method tha t is
common to both. C ontinuing to budget for po-
tential rela t ive mis-calibra tion between low- and
high-redshift bins, as well as including all other
sources of systema tic and sta t ist ical error, reveals
a drama tic threefold t ightening of parameter con-
st raints.

We have also t ried increasing the number of red-
shift slices, for a finer quanti ta t ive measurement of
the evolu tion of the shear signal. We a t temp ted an
analysis using five redshift bins, crea ted by spli t-
t ing in half the first two slices of the three used
previously. U nfor tuna tely, the covariance ma t rix
became degenera te, and harder to inver t . Fur-
thermore, the best-fi tχ2

r e d u ce d and cosmological pa-
rameter const raints degraded. T he resul ts in each
bin were very noisy (the signal to noise is pro-
por tional to n−2

g a l a x i es), bu t , as in §4.2, there were
hints tha t the signal did not evolve as expected
after this finer redshift binning. T he likelihood
surfaces from individual slices did not agree, so
their combina tion was blurred ou t . We interpret
this as indica ting tha t galaxies were beginning to
be placed in the wrong redshift bins, and pollu ting
tha t signal. T hus we have e  ect ively reached the
available precision of the photomet ric redshifts, a t
least a t the high redshifts in which the weak lens-
ing signal is concent ra ted. For fur ther progress,
we awai t ongoing, deeper mul t icolor observa tions
of the C O SM O S field.
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Dark energy constraints 

Dark Energy Task 
Force: “Weak lensing is 
potentially the most 
powerful probe of dark 
energy. The ultimate 
limit would be set by the 
extent to which the 
systematics can be 
controlled.” 
(Albrecht et al. 2006) 

Jarvis et al. 2006 (CTIO) 

6

FIG. 2.— Contour plots of  2 for the (Ωm ,  8 ) plane. The left plot shows the effect of adding the data sets sequentially, starting with the CMB
constraints, then adding the supernova and lensing data. The right plot shows contours for each of the three data sets separately. In each case
the contours enclose the 68% and 95% confidence regions. The × is the best fit model. All other parameters are marginalized over as discussed
in the text.

FIG. 3.— Contour plots of  2 for the (Ωm ,  8 ) plane (left) and the (Ωde , w) plane (right) for the constant w dark energy models. Both plots
show the effect of adding the data sets sequentially. In each case the contours enclose the 68% and 95% confidence regions. The black × ’s are
the best fit models in each plane. The cyan × in the left plot is the best fit from the ΛCDM prior (Figure 2).

4.2.3. Variable w Models

Finally, we consider dark energy priors of − 8 < w0 < 8 and − 8 < wa < 8. It turns out that some of the dark energy models
in this range have ΩD E (z = 1100) ≈ 1. That is, the mass-energy of the universe was essentially all dark energy at the epoch
of recombination. This seems to be ruled out by WMAP data (Caldwell et al. 2003; Caldwell & Doran 2004; Wang & Tegmark
2004). Therefore, we make the additional prior thatΩD E (z = 1100) < 0.5. In practice, all the models haveΩD E (z = 1100) ≈ 0
or 1, so this contraint is effectivelyΩD E (z = 1100) ≈ 0.
Given this constraint, the primary effect of dark energy on the CMB is through the distance to the last-scattering surface, dL SS.

Therefore, we approximate the CMB likelihoods by using the WMap constant-w Markov chain mentioned above, modifying the
dark energy parameters to maintain a constant dL SS. Specifically, for each line in the Markov chain, we determine dL SS from the
values of Ωm and w; we select wa from − 8 < wa < 8; then we determine what w0 with this wa and the same Ωm maintain the
given value of dL SS, and we write these values out as a line in a new pseudo-chain.
The main approximation in this process is that we neglect the difference of the integrated Sachs-Wolfe (ISW) effect between

Can also constrain 
modifications to 

General Relativity 



Testing GR 



Motivation for modifying GR on 
large scales 
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FIG. 7.— Best-fit confidence regions in the ΩM–ΩΛ plane for our primary analysis, Fit C. The 68%, 90%, 95%, and 99% statistical confidence regions in
the ΩM–ΩΛ plane are shown, after integrating the four-dimensional fit over MB and α. (The table of this two-dimensional probability distribution is available
at http://www-supernova.lbl.gov/.) See Figure 5(e) for limits on the small shifts in these contours due to identified systematic uncertainties. Note that the spatial
curvature of the universe—open, flat, or closed—is not determinative of the future of the universe’s expansion, indicated by the near-horizontal solid line. In
cosmologies above this near-horizontal line the universe will expand forever, while below this line the expansion of the universe will eventually come to a halt and
recollapse. This line is not quite horizontal because at very high mass density there is a region where the mass density can bring the expansion to a halt before the
scale of the universe is big enough that the mass density is dilute with respect to the cosmological constant energy density. The upper-left shaded region, labeled “no
big bang,” represents “bouncing universe” cosmologies with no big bang in the past (see Carroll, Press, & Turner 1992). The lower right shaded region corresponds
to a universe that is younger than the oldest heavy elements (Schramm 1990), for any value ofH0 ≥ 50 km s$1 Mpc$1.

Accelerated expansion 
contradicts GR in a 
matter-dominated 
universe 

But we want to keep 
gravity the same within 
the Solar System 

Perlmutter et al. 1999 



Motivation for modifying GR on 
large scales 
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FIG. 7.— Best-fit confidence regions in the ΩM–ΩΛ plane for our primary analysis, Fit C. The 68%, 90%, 95%, and 99% statistical confidence regions in
the ΩM–ΩΛ plane are shown, after integrating the four-dimensional fit over MB and α. (The table of this two-dimensional probability distribution is available
at http://www-supernova.lbl.gov/.) See Figure 5(e) for limits on the small shifts in these contours due to identified systematic uncertainties. Note that the spatial
curvature of the universe—open, flat, or closed—is not determinative of the future of the universe’s expansion, indicated by the near-horizontal solid line. In
cosmologies above this near-horizontal line the universe will expand forever, while below this line the expansion of the universe will eventually come to a halt and
recollapse. This line is not quite horizontal because at very high mass density there is a region where the mass density can bring the expansion to a halt before the
scale of the universe is big enough that the mass density is dilute with respect to the cosmological constant energy density. The upper-left shaded region, labeled “no
big bang,” represents “bouncing universe” cosmologies with no big bang in the past (see Carroll, Press, & Turner 1992). The lower right shaded region corresponds
to a universe that is younger than the oldest heavy elements (Schramm 1990), for any value ofH0 ≥ 50 km s$1 Mpc$1.

Accelerated expansion 
contradicts GR in a 
matter-dominated 
universe 

But we want to keep 
gravity the same within 
the Solar System 

Perlmutter et al. 1999 

Modifications to GR on     
large scales will impact 

weak lensing observables… 



Lensing in GR 

Massive 
body 

Φ = F(ρ) 

Θ = G(Φ) 

The potential is a 
function of the 
matter distribution: 

The light bending 
angle is a function of 
this potential: 

Photon 



Lensing in modified gravity 

Massive 
body 

Φ = F(ρ) 

Θ = G(Φ) 

The potential is a 
function of the 
matter distribution: 

The light bending 
angle is a function of 
this potential: 

Photon 



Lensing in modified gravity 

Massive 
body 

Φ = F(ρ) 

Θ = G(Φ) 

The potential is a 
function of the 
matter distribution: 

The light bending 
angle is a function of 
this potential: 

Photon 

Modifying GR can change how:  
•  matter produces potentials 
•  photons move in those potentials 



Modified gravity theories 
•  Brans-Dicke 
•  Tensor-scalar 
•  Tensor-vector-scalar 
•  DGP 
•  Supergravity 
•  Brane-induced gravity 
•  Conformal gravity 
•  F(R) 
•  F(G) 
•  Chern-Simons 
•  MOG 
•  Torsion gravity 
•  Massive gravity 
•  Horava-Lifshitz 
•  Dilaton gravity 
•  Goldstone gravity 
•  Loop quantum gravity 
•  Discrete quantum gravity 
•  Effective quantum gravity 
•  Holographic modified gravity 
•  Asymmetric brane modified gravity 
•  Rainbow gravity 
•  Minimally modified self-dual gravity 
•  String inspired quintom model 

   Very large theory space 

want model-independent 
tests of generic 
deviations from GR 



Lessons from “small” scales 

The parameterized post-Newtonian (PPN) 
formalism – in the weak-field regime, the 
gravitational potentials of GR are modified, 
for instance like: 

Model-independent constraints on 
the PPN parameters β, γ, etc. 

  

€ 

ds2 = −(1− 2U + 2βU 2)dt 2 + (1+ 2γU +
3
2
εU 2)dr 

x 2

Can do similar “PPF” expansion about 
FRW background on cosmological scales 



PPN parameters 

Will 2006 



PPN parameters 

Will 2006 

Solar System constraints: 
•  Light deflection due to the sun 
  γ-1=(-1.7±4.5)×10-4 (VLBI) 
•  Perihelion precession of Mercury 
  |2γ-β-1|<3×10-3 (Shapiro 1990) 

Are these parameters the same on 
all scales? 



The PPF framework 

Method for constraining modified gravity in 
model-independent fashion (e.g. Hu and Sawicki 
2007; Bertschinger & Zukin 2008) 

Parameters may change depending on 
time or lengthscale   

Important scales: 

•  Superhorizon – must match expansion history 

•  Small scales – must match GR 

•  Intermediate linear regime – important for 
weak lensing 



PPF weak lensing 

The metric: 

  

€ 

ds2 = a2(τ)[−(1− 2U + 2βU 2)dτ 2 + (1+ 2γU +
3
2
εU 2)dr 

x 2]

Standard Newtonian + post-
Newtonian scalar potential 

Possibly time- and scale-
dependent PPF parameters 

Goal: to constrain these parameters with lensing 
data, test GR in the crucial weakly nonlinear 
regime 

Need: 
•  Post-Newtonian lensing calculation with arbitrary 
(small) potential U 
•  A nonlinear study to get beyond γ 



We solve for the light ray trajectory, to 
second order in U and including all 
nonlinear effects… 

From the metric we compute the 
connection and get the null geodesic 
equation: 

where 

        get deflection angle αi 

Distortion tensor: 

                  the convergence 

Post-post-Newtonian light 
deflection 

Light rays in a post-post-Newtonian spacetime

For a static lens with gravitational potentials U(x, y, z) (which is the sum of the standard Newtonian and post-
Newtonian scalar potentials) and Vi(x, y, z), in standard Cartesian and isotropic coordinates (t, x, y, z), the general
line element can be written as

ds2 = gµνdxµdxν = −
(

1− 2
c2

U +
2
c4

βU2

)
dt2 +

2
c3

Vidtdxi +
(

1 +
2
c2

γU +
3

2c4
εU2

)
δijdxidxj (1)

to second order in the potential U , where we are neglecting tensor modes. The parameters β, γ, and ε are all equal
to one in GR. Note that we are currently assuming that the background spacetime is Minkowski. It’s simple to
generalize to the FRW case at the end of the calculation. We also set c = G = 1, leaving the powers of c in place for
post-Newtonian book-keeping purposes.

The connection is

Γα
µν =

1
2
gαβ (∂νgβµ + ∂µgβν − ∂βgµν) (2)

and the null geodesic equation is

dkα

dλ
= −Γα

µνkµkν , (3)

where kα(λ) = dxα/dλ is the photon 4-momentum, xα(λ) is the light ray trajectory, and λ is an affine parameter.
Let us assume that the unperturbed ray moves along the positive x-axis, and we will place the source at x = 0 and
the observer at some location x. Of course we also require that the null geodesic actually be null, i.e. gµνkµkν = 0,
and we will further normalize it such that (kt, kx, ky, kz) = (1, 1, 0, 0) for the unperturbed ray. The geometry of the
generic lensing scenario is sketched out in the figure, stolen from Blandford & Narayan (1992). Note in particular
that α̂ is the deflection angle felt by the ray and α is the angular change in sky position as seen by the observer.

We can change the independent variable from λ to x using the following relation:
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Γα

µνkµkν

kx
, (5)

then we can integrate Eq. (3) along the ray trajectory, with the help of Eqs. (4) and (5), to find the 4-momentum as
a function of the independent variable x,

kα(x) =
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0
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which we are also parameterizing as a function of the x-coordinate along the ray, x. Within the perturbative post-
Newtonian framework, these equations can be solved iteratively to get the full ray trajectory (x(x) to any order in 1/c.
Once we know the ray position at the observer, xi(x), then the angle αi (see the figure) is such that xi(x) = xαi(x),
where now i = y, z if we use the “flat sky approximation”. Thus

αi(x) =
1
x
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Light deflection at first order: 1PN

Generalizing to the cosmological scenario, we now denote w as the comoving distance to the image source and (θ is
the location on the observer’s image plane. Then we find
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Light rays in a post-post-Newtonian spacetime

For a static lens with gravitational potentials U(x, y, z) (which is the sum of the standard Newtonian and post-
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(
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to second order in the potential U , where we are neglecting tensor modes. The parameters β, γ, and ε are all equal
to one in GR. Note that we are currently assuming that the background spacetime is Minkowski. It’s simple to
generalize to the FRW case at the end of the calculation. We also set c = G = 1, leaving the powers of c in place for
post-Newtonian book-keeping purposes.
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and we will further normalize it such that (kt, kx, ky, kz) = (1, 1, 0, 0) for the unperturbed ray. The geometry of the
generic lensing scenario is sketched out in the figure, stolen from Blandford & Narayan (1992). Note in particular
that α̂ is the deflection angle felt by the ray and α is the angular change in sky position as seen by the observer.
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new contribution to skewness
beta generically a function of epsilon - give scalar-tensor example from damour and esposito-farese
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β-independent second-order terms… 
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Linear piece          constrain γ with power spectrum 

Nonlinear piece         constrain β with bispectrum 



•  This talk: 

•  Daniel et al. 2009: 

•  Bean 2009: 

Constraining gamma 

ds2 = a2
[
− (1 + 2ψ) dτ 2 + (1− 2φ) d$x2

]

ψ

φ
=

1

γ
= 1 + & (1)
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TABLE I: Summary of the findings. Six scenarios are considered with a ΛCDM cosmic expansion history. Five scenarios have
large scale structure growth histories differing from GR, allowing γ or η to vary individually. These are compared to a fiducial
model in which growth is determined by GR. The table shows 68% confidence limits on γ and 1/η. The change in effective
χ2

≡ −2 lnL for the best fit likelihood, L, per extra degree of freedom (dof), relative to the best fit GR model (χ2
eff = 3126.7

with γ(z = 1) = 0.5411+0.0003
−0.0003 and η = 1 ) is given along with the p-value for GR in light of the data.

Deviations from GR in the growth of structure

Varying 1/η γ

Redshift range z < 1 z < 2 1 < z < 2 z < 1 z < 2

68% c.l. 1.42+0.13
−0.12 1.44+0.14

−0.14 3.25+0.51
−0.34 0.54+0.40

−0.40 0.55+0.23
−0.24

∆(−2 lnL)/∆dof 2.4 3.2 5.3 - -

p-value for consistency with GR 12% 7% 2% 100% 100%

FIG. 1: 1D marginalized constraints for 1/η for the scenarios
in which 1/η can vary at 1 < z < 2 . The results disfavor GR
(the dashed line) at the 98% significance level (p-value=0.02).

Ωbh2 and Ωch2 (H0 = 100hkm/s/Mpc); the angular
size of the sound horizon at CMB last scattering; τreion;
and the primordial power spectrum tilt and amplitude,
ln(1010∆2

R(k = 0.05/Mpc)). Following [37], we also
marginalize over absolute calibration uncertainties in the
3 weak lensing bins using 3 nuisance parameters with
Gaussian priors based on HST simulations. We run 12
independent chains for each scenario until they satisfy
the Gelman-Rubin convergence criteria [38].

The results are summarized in Table I. There is no
significant evidence for a modification in the growth rate
when γ alone is varied. The data does, however show
a preference for a difference between the two Newtonian
potentials at 1 < z < 2; allowing η < 1 gives a 5.3
improvement in χ2

eff for one extra degree of freedom,

FIG. 2: The ratio of the convergence power spectrum for the
best fit model when 1/η is allowed to vary at 1 < z < 2 (1/η =
3.70) to that for GR. The highest redshift bin is boosted by
the change in 1/η over the two lower redshift bins.

implying that the data disfavors GR at the 98% signifi-
cance level (1- p-value). Figure 1 shows the tension be-
tween GR and the data with the 1D marginalized 1/η
likelihood plane.

The weak lensing measurement is most sensitive to η
and so its unsurprising that the improvement in χ2 is
driven wholly by the COSMOS data. Figure 2 shows how
η < 1 at z > 1 boosts the amplitude of highest redshift
shear correlations, allowing a better fit to the data. One
would need an additional ∼ 50% calibration error in the
bin to mimic the result. There is no significant evidence
in the data of deviations from GR at z < 1.

If we exclude the lensing data, the low CMB
quadrupole disfavors the boost in the ISW signal aris-
ing from large 1/η, but provides weaker constraints, con-
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ds2 = a2
[
− (1 + 2ψ) dτ 2 + (1− 2φ) d$x2

]

%(z) = %0(1 + z)−3 (1)

γ = φ/ψ (1)

ψ = (1 + $)φ (2)

η(k, a) = φ(k, a)/ψ(k, a) (3)

γ = φ/ψ (1)

ψ = (1 + $)φ (2)

η(k, a) = φ(k, a)/ψ(k, a) (3)

γ = φ/ψ (1)

ψ = (1 + $)φ (2)

η(k, a) = φ(k, a)/ψ(k, a) (3)

Too much shear?
DES will do far better 
with ~2500X more 
area 



Constraining beta and epsilon 

(AV & Caldwell in prep) 

Non-GR values for beta and epsilon change the 
bispectrum… 

Recast as a change to an effective fNL: 

ε is generally a function of β, e.g. in scalar-tensor 
theories (Damour & Esposito-Farese 1996) 

See Bergé et al. 2009 for a discussion of weak 
lensing bispectrum measurements 

γ = φ/ψ (1)

ψ = (1 + $)φ (2)

η(k, a) = φ(k, a)/ψ(k, a) (3)

δfNL =
3δε− 4δβ

8
(4)(if we set γ=1) 



The (far) future of 
weak lensing 



Weak lensing requirements 

To get accurate shear measurements, we need: 

•  Accurate galaxy shape measurements 
  Small and stable PSF 
  Low detector systematics 
  Sufficient nearby stars to 
 calibrate the PSF 

•  Accurate redshifts 

•  Good statistics 
  Width actually more  
important then depth  
for a fixed exposure time 

Optimal Surveys for W eak Lensing Tomography 5

F i g u r e 3. G ai ns i n F O M w hen t i me is dedica t ed to i ncreasi ng
one of t he t h ree p ar a me t ers w hich i m p ac t t he st a t ist ics of cosm ic
shear . We see t h a t devot i ng obser v i ng t i me to i ncreasi ng t he area
of t he su r vey h as t he grea t est i m p ac t on t he F O M , w hile t he
ch a nge i n medi a n redshif t lensed gal a x ies ca uses a m i ni m al ch a nge
i n F O M . W hen p erfor m i ng a deep vs. w i de t r a de-off st u d y, t hese
t h ree fac tors fall i nto two grou ps. I ncreasi ng t he area requires
obser v i ng t i me b ei ng sp ent goi ng w i de, w hile t he ot her two fac tors
p refer a deep su r vey. T a k i ng t his i nto accou nt , we see t h a t t he
gai ns from i ncreasi ng area ou t-weigh t he combi ned gai ns of zm
a n d ng.

Figure 6 shows the change in figure of merit as a func-
tion of δz. We see a clear degradation of the FOM with
increasing δz. We find that for our ideal survey, the figure
of merit scales as, FOM ∝ 10−1.64δz . We also find that for
a shallower survey, with zm = 0.9 and ng = 35, the figure
of merit also shows a drop with δz, (FOM ∝ 10−1.69δz ). In-
vestigating the impact of catastrophic failures, we also find
a decrease in the figure of merit for an increase in the catas-
trophic failure fraction, fca t , (figure 7). For the ideal sur-
vey, we find that FOM ∝ 10−0.75fc a t . We also find that for
a survey with the same geometry as our ideal survey but
with δz = 0.1, FOM ∝ 10−0.94fc a t , the shallow survey with
δz = 0.01 has a FOM ∝ 10−0.93fc a t , and finally that a shal-
low survey with δz = 0.1 has FOM ∝ 10−1.1fc a t .

Next we show the requirements on the calibration sam-
ple, namely how the FOM depends on the number of spec-
troscopic redshifts available, ns. Figure 8 shows the results
for four cases, (i) our ideal survey, (ii) our ideal survey with
δz = 0.1, (iii) our shallow survey with δz = 0.01, and (iv)
our shallow survey with δz = 0.1. These values of δz have
been chosen to look at the difference one would expect from
a good photo-z survey (δz = 0.01) and a more modest sur-
vey (δz = 0.1). For each case we show the calculations for
two scenarios: in the first we marginalize over both the mean
and the variance, and in the second we marginalize only over
the mean and fix the variance. From our results we see that
uncertainties in these quantities (mean and variance) are
important and can substantially reduce the sensitivity of a
survey, although it is interesting to note that even with a

F i g u r e 4. T he resul ts of a deep vs. w i de t r a de-off st u d y, gi ven 3
years of obser v i ng t i me. T he su r vey area , gal a x y nu mb er cou nts
a n d t hei r medi a n redshif t are calcul a t ed by i nt er p ol a t i ng an d ex-
t r a p ol a t i ng t he resul ts of M assey e t al . (2004b ). T he t h ree qu a n-
t i t ies are st rongl y cor rel a t ed . H ence, a w i de su r vey w ill h ave a
lower gal a x y nu mb er densi t y a n d medi a n redshif t t h a n a su r vey
cover i ng a sm all area . T he u p p er p a nel shows t he op t i m isa t ion
usi ng t he F O M , qu a nt if y i ng t he er ror levels on a 2 p ar a me t er w
mo del , a n d t he lower p a nel shows t he er rors on t he equ a t ion of
st a t e for a const a nt w mo del (i .e. a 1 p ar a me t er w mo del). A s
discussed i n sec t ion 2.1, i m p rovement as measu red by t he F O M
is grea t er t h a n t he i m p rovement from a 1 p ar a me t er w mo del .

small number of calibration galaxies, weak lensing tomogra-
phy is able to provide good self-calibration. For large number
of galaxies in the range 104 − 105, the photometric calibra-
tion is robust, which is in agreement with Ma et al. (2006)
who also find that they need this many galaxy spectra for
calibration. We see that in this region where very few galaxy
spectra are available, uncertainties in both the mean and the
variance play an important role. However, if the number of
calibration galaxies exceeds 104, only the uncertainty in the
mean is important. This suggests that if we do investigate
higher order moments, they should only be important when
the number of galaxy spectra is small. We can expect that
above 104 galaxy spectra, the uncertainty in the mean will
continue to dominate.

4.3 Shear Measurement Systematics and
Theoretical Uncertainties

The final sources of error we consider are those associ-
ated with the lensing power-spectrum itself. These errors
could have a number of origins, ranging from residual galaxy
shape correlations arising from imperfect PSF deconvolu-
tion to uncertainties in the theoretical predictions. Due to
the potential complexity and unknown nature of this er-
ror, we consider a simple phenomenological error model for
the power spectrum. Specifically, we consider a systematic
uncertainty in all the power-spectra (auto-correlations and
cross-correlations) of the form,

Amara & Refregier 2007 



Future possibilities 

•  NASA/DOE Joint Dark Energy Mission 

•  ESA Euclid –  
  all-sky imaging and spectroscopic survey 

•  High Altitude Lensing Observatory –  
  balloon-borne optical imaging survey 



The High Altitude Lensing 
Observatory 

                                PI: Jason Rhodes 
Jeff Booth (JPL), Kurt Liewer (JPL), Michael Seiffert 
(JPL),Wesley Traub (JPL), Richard Key (JPL), Ali Vanderveld 
(Caltech/JPL), Adam Amara (ETH Zurich), Richard Ellis 
(Caltech), Richard Massey (University of Edinburgh), Satoshi 
Miyazaki (NOAJ Japan), Harry Teplitz (Spitzer Science Center, 
Caltech), Calvin Barth Netterfield (University of Toronto), 
Alexandre Refregier (CEA Saclay, Paris), Roger Smith (Caltech) 



Weak lensing past & future 

Higher systematics  



Using a balloon 

•  NASA’s Ultra Long Duration 
Balloon program 

•  7 million cubic foot balloon 
flown (14 and 22 MCF 
planned) 

•  14 MCF have ~2000 pound 
payload 

•  20 day circumnavigations from 
Australia baselined for science 
within a few years 

Columbia Scientific Balloon Facility 



HALO 

•  15-20 day flight 
Australia to 
Australia (can stop 
in South America if 
needed) 

•  1.2m lightweight 
primary mirror 

•  48 2k×4k 
Hamamatsu CCDs 

•  Single wide optical 
filter 

•  Solar panel to 
recharge batteries 

•  1000 kg 

•   Need to pick up the disk 
drives (2 Tb) afterwards to 
do the science 
•  Photo zs from ground 



Key parameters 

•  15-20 galaxies per 
square arcminute 
•  If overlaps with DES 
area, will provide space-
quality calibration sample 



Hurdles 

Technical: 

•  Pointing stability to 0.1” – fast steering mirror 

•  Thermal stability to 1 K to reach weak lensing 
shape requirements 

•  Power requirements of large focal plane 

•  Mass limit imposed by balloon capabilities 

Programmatic: 
•  Technical requirements imply risk 
•  High cost relative to typical balloon missions 
and the balloon budget – external partners 
•  14MCF and 22MCF and Australian launch need 
to be demonstrated 



Timeline 

March 2010- Proposal due to NASA ROSES/APRA 

October 2010- Selections 

2010-2011 – Development 

2011-2012- Construction 

2013 – Integration at JPL 

2014- Overnight Test Flight at Ft. Sumner (US) 

Late 2014/early 2015- Science flight at Alice 
Springs, Australia 



Science reach 

Understand dark matter: 
•  Amount and distribution 
•  Weak and strong lensing 

Explore dark energy and 
modified gravity: 
•   Examine expansion history 
•   Growth of structure 

Ancillary science: 
•   Galaxy morphology and evolution 
•   Stellar counts 
•   Surface brightness fluctuations 



Conclusions 

•  Weak gravitational lensing is an 
excellent cosmological tool 

•  In particular, it is an excellent probe of 
modified gravity and dark energy 

•  The PPF formalism gives model-
independent constraints on 
modifications of General Relativity 

•  Future space-quality data from HALO 
can make this possible 


